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Abstract. We study the final-state interactions in B → πK decays through B → V V → πK processes
where the inelastic rescattering occurs via single pion exchange. The next-to-leading order low-energy
effective Hamiltonian and Bauer-Stech-Wirbel (BSW) model are used to evaluate the weak transition
matrix elements and final-state interactions. We found that the final-state interaction effects in B →
ρK∗ → πK processes are significant. The Fleischer-Mannel relation for the Cabibbo-Kobayashi-Maskawa
(CKM) angle γ can be significantly modified.

PACS. 13.25.Hw Decays of bottom mesons – 13.75.Lb Meson-meson interaction – 11.30.Er Charge con-
jugation, parity, time reversal, and other discrete symmetries – 13.40.Hq Electromagnetic decays

1 Introduction

Final-state interactions (FSI) play an important role in
many physical processes, especially in the weak decays
which are in the focus of recent interests. Their effects
lie in two aspects. First, strong phases in the weak decay
amplitudes are generated by the final-state interactions,
they can contribute the strong phases for the direct CP
asymmetries. Second, FSI effects can significantly change
theoretical predictions for certain quantities. The study
of final-state interactions would definitely need an infor-
mation about the non-perturbative effects of low-energy
hadron interactions. Unless we can correctly evaluate the
FSI effects, it is impossible to extract reliable information
about the reaction mechanism or new physics from the
data. Not only the understanding of the final-state inter-
action effects in weak decays is crucially important, but it
is also a challenging and difficult task in both theory and
phenomenology. Up to now, definite quantitative analysis
has not been accessible yet. The estimate of the final-state
interactions is centred on some particular cases where the
symmetry relations can be applied, or one can use some
simplified models, for example, the Regge pole or single-
pion exchange model, etc. to do the job.

The origin of CP violation in the Standard Model
comes from the complex phase of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix. In general, for three generation
quark families the CKM matrix elements form a unitar-
ity triangle. So, the reasonable extraction of each angle
a E-mail address: duds@bepc3.ihep.ac.cn;
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(α, β, γ) is extremely important for testing the Standard
Model. Among the three angles, to extract γ is most dif-
ficult. Some methods [1] have been put forward for this
purpose. But all the methods are either too complicated
or impractical from the experimental point of view. Last
year, the CLEO collaboration reported the combined ra-
tios for B → πK decays [2]:

BR(B± → π±K) = (2.3+1.1+0.2
−1.0−0.2 ± 0.2)× 10−5 ,

BR(Bd → π∓K±) = (1.5+0.5+0.1
−0.4−0.1 ± 0.1)× 10−5 .

Fleischer and Mannel [3] gave a boundary relation for
the CKM angle γ based on the above results: R ≥ sin2 γ,
where R = BR(Bd→π∓K±)

BR(B±→π±)K
= 0.65 ± 0.40, γ ≡ Arg(V ∗ub).

In their work, final-state interactions were neglected. How-
ever, the final-state interactions in such channels may be
important and cannot be ignored. Some authors [4,5] have
studied the final-state interaction effects in B → πK de-
cays. Investigations of [4] are based on the Regge pole the-
ory. In [6], the authors study final-state interactions due
to single pion exchange in D → V P processes. Their re-
sults show that the single pion exchange can be significant.
It is believed that even though the two schemes describe
the process based on different physical considerations, in
practice, each of them works well, just because the un-
certainties are partly compensated by proper selection of
some phenomenological parameters in these schemes.

In this paper, we study the final-state interactions in
B → V V → πK due to single pion exchange. In Stan-
dard Model calculations, the decay amplitude of the pro-
cess B → ρK∗ is of the same order as that of B → πK.
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In fact, both K∗ → Kπ and ρ → ππ are the dominant
strong decay channels, so the single pion exchange mech-
anism may dominate the final state interactions. In our
processes, the exchanged pion is in the t-channel. There
are other two-vector-meson states which can rescatter into
the πK final state by pion exchange. But these interme-
diate mesons have smaller couplings to πK and ππ than
K∗ → πK and ρ → ππ; they are also heavier than ρ and
K∗ and will result in larger t-values, that will reduce their
contribution even more. So, among the final-state interac-
tion processes B → V V → πK, B → ρK∗ → πK should
be the largest one.

We use the method which was presented in [6]. The
next-to-leading order low-energy effective Hamiltonian
and Bauer-Stech-Wirbel (BSW) model [7] are used to eval-
uate the weak transition matrix elements and final-state
interactions. We find that the final-state interaction effects
in B → ρK∗ → πK are significant.

2 Formulation of FSI in the effective
Hamiltonian

To evaluate the decays B → πK, we use the next-
to-leading order low-energy effective Hamiltonian and
BSW model. The next-to-leading order low-energy effec-
tive Hamiltonian describing |∆B| = 1 transitions is given
at the renormalization scale µ = O(mb) [8] as follows:

Heff (|∆B| = 1) =
GF√

2

[ ∑
q=u,c

vq

{
Qq1C1(µ) +Qq2C2(µ)

+
10∑
k=3

QkCk(µ)
}]

+H.C. (1)

The CKM factors vq are defined as vq = V ∗qsVqb, where
q = u, c.

Ten operators Qu1 , Qu2 , Q3, . . . , Q10 are known as the
following forms:

Qu1 = (q̄αuβ)V−A(ūβbα)V−A
Qu2 = (q̄u)V−A(ūb)V−A

Q3(5) = (q̄b)V−A
∑
q′

(q̄′q′)V−A(V+A)

Q4(6) = (q̄αbβ)V−A
∑
q′

(q̄′βq
′
α)V−A(V+A)

Q7(9) = 3
2 (q̄b)V−A

∑
q′

eq′(q̄′q′)V+A(V−A)

Q8(10) = 3
2 (q̄αbβ)V−A

∑
q′

eq′(q̄′βq
′
α)V+A(V−A) ,

(2)

where Qu1 and Qu2 are the current-current operators, and
the current-current operators Qc1 and Qc2 can be ob-
tained from Qu1 and Qu2 through the substitution u →
c. Q3, . . . , Q6 are the QCD penguin operators, whereas
Q7, . . . , Q10 are the electroweak penguin operators. The
quark q = s for b → s transition; (V ± A) refer to
γµ(1± γ5).

The matrix elements are:

< QT (µ) ·C(µ) >≡< QT >0 ·C′(µ) , (3)

where < Q >0 denotes the tree-level matrix elements of
these operators, and C′(µ) are defined as follows:

C ′1 = C1, C ′2 = C2, C ′3 = C3 − Ps/3,
C ′4 = C4 + Ps, C

′
5 = C5 − Ps/3, C ′6 = C6 + Ps,

C ′7 = C7 + Pe, C
′
8 = C8, C ′9 = C9 + Pe,

C ′10 = C10.

(4)

Here Ps,e are given by

Ps =
αs
8π
C2(µ)

[
10
9 −G(mq, q, µ)

]
, (5)

Pe =
αem
9π

(
3C1 + C2(µ)

) [
10
9 −G(mq, q, µ)

]
,

G(m, q, µ) = −4
∫ 1

0

dx x(1− x) ln
[
m2 − x(1− x)q2

µ2

]
,

where q represents u, c, and q2 = m2
b/2. Numerical values

of the scheme-independent renormalization Wilson Coef-
ficients Ci(µ) at µ = O(mb) are [9]:

c̄1 = −0.313, c̄2 = 1.150, c̄3 = 0.017,
c̄4 = −0.037, c̄5 = 0.010, c̄6 = −0.046,
c̄7 = −0.001 · αem, c̄8 = 0.049 · αem,
c̄9 = −1.321 · αem, c̄10 = 0.267 · αem.

(6)

(1) Without final-state interaction
In B−u → π−K̄0 decay, only penguin diagrams contribute.
As is commonly agreed in the present literatures, the an-
nihilation diagram contributions are neglected because of
Vub and the form factor suppression. In B̄0

d(bd̄)→ π+K−

decay, both tree and penguin diagrams contribute. The
amplitudes of these two decays are:

Adir(B−u → π−K̄0)

=
GF√

2

∑
q=u,c

vq

[
a3 +

2M2
K0

(ms +md)(mb −md)

×
(
a5 −

1
2
a7

)
− 1

2
a9

]
M K̄0π−

(7)
Adir(B̄0 → π+K−)

=
GF√

2

∑
q=u,c

vq

[
a1δuq + a3 +

2M2
K−

(ms +mu)(mb −mu)

× (a5 + a7) + a9

]
MK−π+

,

where “dir” means direct decay without final-state inter-
actions, and

M K̄0π− ≡ < K̄0|(s̄d)V−A|0 >< π−|(d̄b)V−A|B−u >

= −ifKFB
−
u π

0 (M2
K0)(M2

Bu −M
2
π−)

(8)

MK−π+ ≡ < K−|(s̄u)V−A|0 >< π+|(ūb)V−A|B̄0 >

= −ifKFB
0π

0 (M2
K−)(M2

B0 −M2
π+),
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Fig. 1. Final-state interactions in B →
ρK∗ → πK due to single pion exchange;
a, b the neutral pion exchange case; c, d
the charged pion exchange case

Table 1. The amplitude and branching ratios of the direct B → πK decays, where “Tree” means the tree diagram contribution
only; “penguin” means the penguin diagram contribution only. “Tree+penguin” means tree plus penguin diagram contributions

Decay Mode Nc Adir(10−9GeV ) Br

Tree Penguin Tree+Penguin Tree Tree+Penguin

B−u → π−K̄0 Nc =∞ 0 6.53 + i36.1 6.53 + i36.1 0 1.18× 10−5

B̄0 → π+K− Nc =∞ -7.88+i2.78 6.51 + i34.8 −1.36 + i37.6 5.93× 10−7 1.20× 10−5

B−u → π−K̄0 Nc = 3 0 5.78 + i31.2 5.78 + i31.2 0 8.79× 10−6

B̄0 → π+K− Nc = 3 -7.16+i2.53 5.82 + i32.0 −1.34 + i34.5 4.9× 10−7 1.01× 10−6

B−u → π−K̄0 Nc = 2 0 4.87 + i27.8 4.87 + i27.8 0 6.94× 10−6

B̄0 → π+K− Nc = 2 -6.8+i2.4 5.01 + i29.7 −1.79 + i32.1 4.43× 10−7 8.81× 10−6

and

a2i−1 = C ′2i−1/Nc + C ′2i ,

a2i = C ′2i−1 + C ′2i/Nc .
(9)

Because |vc|/|vu| >> 1, the tree-diagram contribu-
tions to the decay amplitude are small compared to the
penguin diagrams. The factorization approximation and
BSW model [7] are used to evaluate the matrix elements
in (8). Table 1 shows the calculation results in the stan-
dard method for the above two direct decays. The non-
factorization effects have been considered with the choice
Nc =∞, 3, 2.

(2) With final-state interaction
In B → ρK∗ → πK processes, the exchanged pions can be
neutral or charged as is shown in Fig. 1. For charged-pion
exchange the decay B∓u → π∓K can get the tree diagram
contribution in the intermediate state B → ρK∗ → πK.

We take the decay B−u → ρ−K̄∗0 → π−K̄0 as an ex-
ample to show how to calculate the final-state interaction
effects.

The amplitude for B−u → ρ−K̄∗0 decay is the follow-
ing:

A(B−u → ρ−K̄∗0) =
GF√

2

∑
q=u,c

vq(a3−
1
2
a9)M K̄∗0ρ− , (10)

where

M K̄∗0ρ− ≡< K̄∗0|(s̄d)V−A|0 >< ρ−|(d̄b)V−A|B−u >

=
2MK∗0

MBu +Mρ−
fK∗V

Buρ(M2
K∗0)εµνρσε

µ
K∗0ε

ν
ρ−p

ρ
K∗0p

σ
ρ−

+iMK∗0(MBu +Mρ−)fK∗A
Buρ
1 (M2

K∗0)(εK∗0 · ερ−)

−i 2MK∗0

MBu +Mρ−
fK∗A

Buρ
2 (M2

K∗0)(εK∗0 · pB)(ερ− · pB).

(11)

Following [6], the single pion exchange in the t-channel
provides a significant contribution to FSI and would dom-
inate. To get the absorptive part of the loop as is shown
in Fig. 1a, the way to make cuts is: let ρ− and K̄0∗ be
on-shell, and leave the exchanged pion to be off-shell.

In the B−u rest frame, where p
Bu

= (MBu , 0), the ma-
trix element written in (11) is recast into the following
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Table 2. The amplitue for the final-state interactions B → ρK∗ → πK

Decay Mode Nc AFSI(10−9GeV ) AFSI/Adir

Tree Penguin Tree+Penguin

B−u → ρ−K̄∗0 → π−K̄0 Nc =∞ 0 9.86− i1.86 9.86− i1.86 −0.27ei89.60

B̄0 → ρ+K∗− → π+K− Nc =∞ 1.22 + i3.47 9.35− i1.86 10.6 + i1.60 −0.28ei96.50

B−u → ρ0K∗− → π−K̄0 Nc =∞ 0.57 + i1.6 7.34− i2.83 7.9− i1.22 −0.22ei91.50

B̄0 → ρ0K̄∗0 → π+K− Nc =∞ −0.25− i0.72 −5.06 + i1.39 −5.32 + i0.67 0.14ei80.80

B−u → ρ−K̄∗0 → π−K̄0 Nc = 3 0 8.2− i1.65 8.2− i1.65 −0.26ei89.10

B̄0 → ρ+K∗− → π+K− Nc = 3 1.11 + i3.15 8.61− i1.67 9.72 + i1.49 −0.28ei96.50

B−u → ρ0K∗− → π−K̄0 Nc = 3 0.81 + i2.31 6.86− i2.74 7.68− i0.44 −0.24ei97.20

B̄0 → ρ0K̄∗0 → π+K− Nc = 3 0.06 + i0.16 −3.82 + i1.11 −3.77 + i1.27 0.12ei69.20

B−u → ρ−K̄∗0 → π−K̄0 Nc = 2 0 7.1− i1.38 7.1− i1.38 −0.26ei89.00

B̄0 → ρ+K∗− → π+K− Nc = 2 1.06 + i2.99 8.01− i1.43 9.06 + i1.56 −0.29ei96.60

B−u → ρ0K∗− → π−K̄0 Nc = 2 0.94 + i2.66 6.58− i2.48 7.52 + i0.18 −0.27ei98.60

B̄0 → ρ0K̄∗0 → π+K− Nc = 2 0.21 + 0.60 −3.01 + i0.86 −2.8 + i1.46 0.10ei59.20

form for the process B−u → ρ−K̄∗0 → π−K̄0:

M K̄0π−

FSI =
1
2

∫
d3p1

(2π)32E1

d3p2

(2π)32E2
(2π)4δ4(p1 + p2 − pB)

× < π−K̄0|S|ρ−K̄∗0 > M K̄∗0ρ−

=
∫ |

→
p |

16πMBu

d(cosθ)
iF (p2

π0)
(p2
π0 −M2

π0)
(12)

× [iMK∗0(MBu +Mρ−)fK∗A
Buρ
1 (M2

K∗0) ·H1

− i 2MK∗0

MBu +Mρ−
M2
BufK∗A

Buρ
2 (M2

K∗0) ·H2],

where S is the S-matrix of strong interaction, θ is the angle
between

→
p1and

→
p3, and

H1 = −4gρππgK∗Kπ[(p3 · p4)− (p2 · p3)(p2 · p4)
M2

2

− (p1 · p3)(p1 · p4)
M2

1

+
(p1 · p2)(p2 · p3)(p2 · p4)

M2
1M

2
2

]

(13)

H2 = −4gρππgK∗Kπ[(p0
3p

0
4)− (p0

2p
0
3)(p2 · p4)
M2

2

− (p0
1p

0
4)(p1 · p3)
M2

1

+
(p0

1p
0
2)(p2 · p3)(p2 · p4)

M2
1M

2
2

] .

We set p1 = p
K∗ , p2 = pρ, p3 = p

K
, p4 = pπ, M1 = MK∗ ,

M2 = Mρ, M3 = MK , M4 = Mπ.
So, the amplitude of B−u → ρ−K̄∗0 → π−K̄0 is:

AFSI(B−u →π−K̄0)=
GF√

2

∑
q=u,c

vq(a3− 1
2a9)M K̄0π−

FSI . (14)

The factor F (p2
π0) in (12) is an off-shell form factor for

the vertices K∗Kπ and ρππ. We take F (p2
π0) = (

Λ2−m2
π0

Λ2−p2
π0

),

as is done in [6], where Λ = 1.2− 2.0 GeV.

3 Numerical results

The parameters such as meson decay constants, form fac-
tors and quark masses needed for our calculations are
taken as follows.

Meson decay constant [11,10]:
fπ = 0.13 GeV, fK = 0.16 GeV, fuūρ0 = 0.156 GeV,
fK∗ = 0.221 GeV.
Form factor [10]:

FBπ0 (0) = 0.333, FBπ1 (0) = 0.333,

V BK
∗
(0) = 0.369, ABK

∗
1 (0) = 0.328,

ABK
∗

2 (0) = 0.331, V Bρ(0) = 0.329,

ABρ1 (0) = 0.283, ABρ2 (0) = 0.283.

Effective strong coupling constants [6]:
gK∗Kπ = 5.8, gρππ = 6.1.
Λ in the off-shell form factor F (p2

π0): Λ = 1.5 GeV.
Quark mass [11]:
mu = 0.005 GeV, md = 0.01 GeV, ms = 0.2 GeV,
mc = 1.5 GeV, mb = 4.5 GeV.
The Wolfenstein CKM parameters [12]:
λ = 0.22, A = 0.8, η = 0.34, ρ = −0.12.

Due to non-factorization effects, it is hard to choose
the value of Nc, so all three cases are taken into account:
Nc =∞, 3, 2.

Corresponding numerical results are presented in Ta-
ble 1 and Table 2.
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4 Constraints on γ and Adircp
(1) Without final-state interaction

For direct decays of B → πK, the amplitudes are:

Adir(B+ → π+K0) = A+
cs −A+

use
iγeiδ+ ,

Adir(B− → π−K̄0) = A+
cs −A+

use
−iγeiδ+ ,

Adir(B0 → π−K+) = A0
cs −A0

use
iγeiδ0 ,

Adir(B̄0 → π+K−) = A0
cs −A0

use
−iγeiδ0 ,

(15)

where δ0 and δ+ are CP-conserving strong phases.
The ratio R is defined by:

R ≡ BR(B0 → π−K+) +BR(B̄0 → π+K−)
BR(B+ → π+K0) +BR(B− → π−K̄0)

(16)

= (
A0
cs

A+
cs

)2 1− 2r0 cos γ cos δ0 + r2
0

1− 2r+ cos γ cos δ+ + r2
+

,

where r0 = A0
us/A

0
cs, r+ = A+

us/A
+
cs. Neglecting the

electro-weak penguin diagram contributions, we have
A+
us = 0, i.e. r+ = 0. According to SU(2) isospin sym-

metry of strong interaction, A0
cs/A

+
cs ≈ 1. So,

R = 1− 2r0 cos γ cos δ + r2
0. (17)

Following Fleischer and Mannel [3], we can obtain the in-
equality

R ≥ sin2 γ. (18)

This is the Fleischer-Mannel relation.
Direct CP violation in B± → π±K is defined through

the CP asymmetry:

Adir
CP ≡

BR(B+ → π+K0)−BR(B− → π−K̄0)
BR(B+ → π+K0) +BR(B− → π−K̄0)

(19)
=

2r+ sin γ sin δ+
1− 2r+ cos γ cos δ+ + r2

+

.

where “dir” means direct CP asymmetry. In direct decays,
it is small, as it follows from (19):

Adir
CP ≤ O(λ2). (20)

(2) With final-state interaction
When final-state interactions are considered, the am-

plitude of B → πK process is changed to:

A(B+ → π+K0)

= Adir(B+ → π+K0) +AFSI(B+ → ρ+K∗0 → π+K0)

+AFSI(B+ → ρ0K∗+ → π+K0)

= (A+
cs −A+

use
iγeiδ+)(1 +A1e

iδ1 +A3e
iγeiδ3)

(21)
A(B0 → π−K+)

= Adir(B0 → π−K+) +AFSI(B0 → ρ−K∗+ → π−K+)

+AFSI(B0 → ρ0K∗0 → π−K+)

= (A0
cs −A0

use
iγeiδ0)(1 +A2e

iδ1),

where A1, A2, A3 are final-state interaction amplitudes,
and δ1, δ2, δ3 are the strong phases caused by the final-
state interactions, i.e. the phase shifts of the inelastic
rescattering. The term A3e

iγeiδ3 is the contribution from
the tree diagram describing the process B+ → ρ0K∗+ →
π+K0. Our numerical calculations give A1 = 0.5, A2 =
0.15, A3 = 0.05, δ1 ≈ 900, δ2 ≈ 900. The strong phases
are equal to 900, because we calculate only the absorptive
part of the hadron loop caused by the final-state interac-
tions. We will come back to this point in the last section.
The value A1 = 0.5 is greater than A2 = 0.15, that is en-
couraging for our mechanism, because it can explain that
the experimental branching ratio for B± → π±K is larger
than for B0 → π∓K±.

The ratio R in (16) is changed into

R =
1 +A2

2 + 2A2 cos δ2
1 +A2

1 + 2A1 cos δ1
(1− 2r0 cos γ cos δ0 + r2

0) . (22)

If R′ is defined as

R′ = 1− 2r0 cos γ cos δ0 + r2
0 , (23)

then it follows from (22), (23):

R′ =
1 +A2

1 + 2A1 cos δ1
1 +A2

2 + 2A2 cos δ2
R . (24)

So, the Fleischer-Mannel relation is changed to

R′ ≥ sin2 γ . (25)

At A1 = 0.5, A2 = 0.15, δ1 = 900, δ2 = 900 we get R′ =
1.25R. The boundary relation (18) is modified in as much
as 25%, when only the absorptive part of the hadron loop
is under consideration. No doubt, the dispersive part of
the loop will also contribute to the modification. Consider
an example, when the dispersive part of the amplitude is
equal to the absorptive one, A1 = 0.5

√
2, A2 = 0.15

√
2,

δ1 = 450, δ2 = 450, then R′ = 1.58R. So, the boundary
relation is modified significantly, in about 58%.

For direct CP asymmetry,

Adir
CP ≈ 2A3 sin γ sin δ+ . (26)

The final-state interaction can provide about 5% − 10%
direct CP asymmetry. But since the relative sign cannot
be fixed by the theory, we are unable to determine whether
the correction is constructive or destructive.

5 Conclusion and discussion

Numerical results presented in Table 1 and Table 2 show
that final-state interactions due to the single pion ex-
change in B → ρK∗ → πK processes comprise 10%−30%
in respect to the direct decay amplitude. This result is
based only on the consideration of the absorptive part
of the hadron loop caused by the final-state interactions.
The dispersive part of the loop is difficult to calculate be-
cause of the ultraviolet divergence. The elastic and inelas-
tic rescattering caused by vector trajectory( ρ, ω, and K∗)
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exchange can give additional contributions, and there are
many multiparticle intermediate states which cannot be
neglected [4]. Because of these uncertainties, the simple
Fleischer-Mannel relation R ≥ sin2 γ is strongly modified
by the final-state interactions. We think it is difficult to
get reliable information on the weak angle γ in B → πK
processes. The 5% − 10% direct CP asymmetry can be
generated by final-state interactions. Moreover, as is dis-
cussed above, we only consider the absorptive part of the
hadron loop in this work; there are still many uncertain-
ties of theoretical predictions on the constraint of γ and
AdirCP . At present stage, there is no reliable renormaliza-
tion scheme for obtaining correct dispersive part of the
hadron loop, and it is a well-known fact for evaluating the
loops in the chiral Lagrangian theories. We will try some
phenomenological ways to carry out the renormalization
elsewhere[13].
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